Case Study

Scale-up of human metabolites from mixed metabolism of epacadostat

Supply of a glucuronide, gut metabolite and secondary CYP metabolite to support clinical development

Formation and scale-up of human metabolites formed through mixed metabolic pathways is possible using Hypha’s microbial biocatalysis system. In vivo human metabolism of Incyte’s IND epacadostat (EPA) forms 3 major circulating metabolites, from both primary and secondary pathways. Glucuronidation of EPA forms M9, the dominant metabolic pathway, in conjunction with formation of an amidine M11 and an N-dealkylated metabolite, M12. Boer et al. showed reductive metabolism by gut microbiota results in M11, which is absorbed and further modified by CYP enzymes to form the secondary metabolite M12.

Hypha’s microbial panels provided a route to achieve formation of all three human metabolites, with several strains shown able to effectively biotransform EPA. Different strains and dosing regimes were found to be optimal for production of each metabolite. Although M12 was produced by the microbes, it was more easily synthesised. Scale-up of the most productive biotransforming strains for M9 and M11 enabled the supply of 112mg of the glucuronide and 69mg of the gut metabolite at 95% purity to Incyte Corporation.

epacadostat metabolites Case Study image

Reference
Roles of UGT, P450 and Gut Microbiota in the Metabolism of Epacadostat in Humans. Boer et al., 2016. DMD 44(10), 1668-1674.

Related Resources

In recent years, FDA guidance has advised initiating human metabolite profiling earlier in drug development, emphasizing the importance of metabolite identification and quantification to evaluate a drug metabolite’s safety and pharmacological activity. Praliciguat (IW-1973) is a soluble guanylate cyclase (sGC) stimulator in Phase 2 clinical trials for diabetic nephropathy and heart failure with preserved ejection fraction (HFpEF). During studies on metabolism of praliciguat in preclinical species and in human hepatocytes, a prominent direct O-glucuronide metabolite was detected.

Formation and scale-up of human metabolites formed through mixed metabolic pathways is possible using Hypha’s microbial biocatalysis system. In vivo human metabolism of Incyte’s IND epacadostat (EPA) forms 3 major circulating metabolites, from both primary and secondary pathways. Glucuronidation of EPA forms M9, the dominant metabolic pathway, in conjunction with formation of an amidine M11 and an N-dealkylated metabolite, M12.

Hypha’s microbial biocatalysis process is effective at generating metabolites at up to gram scale. Through Hypha and Selcia’s partnership, [13C], [14C], [2H], [3H] and [15N]-labelled metabolites can be accessed to support regulatory, development or research projects in the pharma and crop protection industries. Hypha establishes optimized processes using unlabelled or stable labelled parent substrates, which can then be transferred to Selcia’s state-of-the-art radiochemistry labs for the production of radiolabelled metabolites.

Ready to begin? Our scientists are available to talk through your requirements

Contact Us 2

Subscribe to our newsletter and blog!

Newsletter Signup
Which do you wish to signup for?

Don't forget to subscribe to our newsletter and blog!

Newsletter Signup
Which do you wish to signup for?